Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Res ; 191: 107114, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36870094

RESUMO

BACKGROUND: Individuals with autism spectrum disorder (ASD) have an increased risk of developing epilepsy. Both ASD and epilepsy have been associated with increased levels of immune factors in the blood, including the proinflammatory cytokine interleukin 6 (IL-6). Mice lacking the synapsin 2 gene (Syn2 KO) exhibit ASD-like behavior and develop epileptic seizures. Their brains display neuroinflammatory changes including elevated IL-6 levels. We aimed to investigate the effect of systemic IL-6 receptor antibody (IL-6R ab) treatment on seizure development and frequency in Syn2 KO mice. MATERIAL AND METHODS: Weekly systemic (i.p.) injections of IL-6R ab or saline were given to Syn2 KO mice starting either early in life at 1 month of age, before seizure debut or at 3 months of age, directly after seizure debut and continued for 4 or 2 months, respectively. Seizures were provoked by handling the mice three times per week. The neuroinflammatory response and synaptic protein levels in the brain were determined by ELISA, immunohistochemistry and western blots. In an additional group of Syn2 KO mice, with IL-6R ab treatment early in life, ASD-related behavioral tests including social interaction and repetitive self-grooming, as well as cognitive memory and depressive-/anxiety-like tests, and actigraphy measurements of circadian sleep-awake rhythm were analyzed. RESULTS: The IL-6R ab treatment reduced seizure development and frequency in Syn2 KO mice when initiated before, but not after, seizure debut. However, early treatment did not reverse the neuroinflammatory response or the imbalance in synaptic protein levels in the brain previously reported in Syn2 KO mice. The treatment did not affect social interaction, performance in memory, depressive-/anxiety-like tests or the sleep-awake rhythm of Syn2 KO mice. CONCLUSION: These findings suggest the involvement of IL-6 receptor signaling during epilepsy development in Syn2 KO mice, without significant alterations of the immune reaction in the brain, and independently of cognitive performance, mood and circadian sleep-awake rhythm.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Epilepsia , Camundongos , Animais , Camundongos Knockout , Transtorno do Espectro Autista/genética , Sinapsinas , Interleucina-6 , Convulsões/metabolismo , Imunoglobulinas , Receptores de Interleucina-6 , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Brain Behav Immun ; 91: 369-382, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223048

RESUMO

BACKGROUND: Abnormal folding, aggregation and spreading of alpha-synuclein (αsyn) is a mechanistic hypothesis for the progressive neuropathology in Parkinson's disease (PD). Spread of αsyn between cells is supported by clinical, neuropathological and experimental evidence. It has been proposed that a pro-inflammatory micro-environment in response to αsyn can promote its aggregation. We have previously shown that allelic differences in the major histocompatibility complex class two transactivator (Mhc2ta) gene, located in the VRA4 locus, alter MHCII expression levels, microglial activation and antigen presentation capacity in rats upon human αsyn over-expression. In addition, Mhc2ta regulated dopaminergic neurodegeneration and the extent of motor impairment. The purpose of this study was to determine whether Mhc2ta regulates αsyn aggregation, propagation and dopaminergic pathology in an αsyn pre-formed fibril (PFF)-seeded in vivo model of PD. METHODS: The DA and DA.VRA4 congenic rat strains share background genome but display differential microglial antigen presenting capacity due to different Mhc2ta alleles in the VRA4 locus. PFFs of human αsyn or BSA solution were injected unilaterally to the striatum of DA and DA.VRA4 rats two weeks after ipsilateral administration of recombinant adeno-associated virus (rAAV) vectors carrying human αsyn or GFP to the substantia nigra pars compacta. Behavioural assessment was performed at 2, 5 and 8 weeks while histological evaluation of αsyn pathology, inflammation and neurodegeneration as well as determination of serum cytokine profiles were performed at 8 weeks. RESULTS: rAAV-mediated expression of human αsyn in nigral dopaminergic neurons combined with striatal PFF administration induced enhanced αsyn pathology in DA.VRA4 compared to DA rats. Mhc2ta thus significantly regulated the seeding, propagation and toxicity of αsyn in vivo. This was reflected in terms of wider extent and anatomical distribution of αsyn inclusions, ranging from striatum to the forebrain, midbrain, hindbrain and cerebellum in DA.VRA4. Compared to DA rats, DA.VRA4 also displayed enhanced motor impairment and dopaminergic neurodegeneration as well as higher levels of the proinflammatory cytokines IL-2 and TNFα in serum. CONCLUSIONS: We conclude that the key regulator of MHCII expression, Mhc2ta, modulates neuroinflammation, αsyn-seeded Lewy-like pathology, dopaminergic neurodegeneration and motor impairment. This makes Mhc2ta and microglial antigen presentation promising therapeutic targets for reducing the progressive neuropathology and clinical manifestations in PD.


Assuntos
Proteínas Nucleares , Doença de Parkinson , Transativadores , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Ratos , Substância Negra/metabolismo , Transativadores/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...